Inhibition of soluble epoxide hydrolase confers cardioprotection and prevents cardiac cytochrome P450 induction by benzo(a)pyrene.
نویسندگان
چکیده
We recently demonstrated that benzo(a)pyrene (BaP) causes cardiac hypertrophy by altering arachidonic acid metabolism through the induction of the expression of CYP ω-hydroxylases and soluble epoxide hydrolase (sEH) enzymes. The inhibition of CYP ω-hydroxylase enzymes partially reversed the BaP-induced cardiac hypertrophy. Therefore, it is important to examine whether the inhibition of sEH also confers cardioprotection. For this purpose, male Sprague-Dawley rats were injected intraperitoneally daily with either the sEH inhibitor 1-(1-methanesulfonyl-piperidin-4-yl)-3-(4-trifluoromethoxy-phenyl)-urea (TUPS; 0.65 mg/kg), BaP (20 mg/kg), or the combination of BaP (20 mg/kg) and TUPS (0.65 mg/kg) for 7 days. Thereafter, the heart, liver, and kidney were harvested, and the heart to body weight ratio was measured. The expression of the hypertrophic markers, sEH, heme oxygenase-1, and CYP450 enzymes was determined. Our results demonstrate that BaP alone significantly induced the expression of sEH and CYP ω-hydroxylases in the heart, liver, and kidney tissues. Treatment with TUPS significantly reversed the BaP-mediated induction of the hypertrophic markers, completely prevented the increase in the heart to body weight ratio, and reduced the BaP-induced CYP1A1, CYP1B1, CYP4F4, and CYP4F5 genes in the heart. The current study demonstrates the cardioprotective effect of sEH inhibitor, TUPS, against BaP-induced cardiac hypertrophy and further confirms the role of sEH and CYP450 enzymes in the development of cardiac hypertrophy.
منابع مشابه
Effect of coexposure to asbestos and kerosene soot on pulmonary drug-metabolizing enzyme system.
This article reports the effect of coexposure to Indian chrysotile asbestos (5 mg/rat) and kerosene soot (5 mg/rat) on the pulmonary phase I and phase II drug-metabolizing enzymes 1, 4, 8, 16, 30, 90, and 150 days after a single intratracheal inoculation. Exposure to soot resulted in a significant induction of the pulmonary microsomal cytochrome P450 and the activity of dependent monooxygenase,...
متن کاملNADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene
Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the c...
متن کاملEMFs: breast cancer culprits?
-Six phenols [2(3)-t-butyl-4-hydroxyanisole (BHA), 2-t-butylphenol, 4-methoxyphenol, 4-methylmercaptophenol, t-butylhydroquinone and 2,6-di-tbutylphenol] previously shown to be inhibitors of benzo(a)pyrene-induced neoplasia, were examined for their ability to induce in vivo changes in hepatic mono-oxygenase and detoxication enzyme activities, and to act as mono-oxygenase inhibitors when added i...
متن کاملThe impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers
Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5 , to investigate BaP metabolism. Human ...
متن کاملModulation of human cytochrome P450 1A1-mediated oxidation of benzo[a]pyrene by NADPH:cytochrome P450 oxidoreductase and cytochrome b5.
OBJECTIVES Cytochrome P450 (CYP) 1A1 located in the membrane of endoplasmic reticulum is the most important enzyme in both activation and detoxification of carcinogenic benzo[a]pyrene (BaP), in combination with microsomal epoxide hydrolase (mEH). However, it is still not clearly explained how the electron transfer is mediated by NADPH:CYP oxidoreductase (POR), another component of the microsoma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cardiovascular pharmacology
دوره 57 3 شماره
صفحات -
تاریخ انتشار 2011